
OBJECTIVE: To formulate evidence-based recommendations for health care professionals about the diagnosis and evaluation of a simple febrile seizure in infants and young children 6 through 60 months of age and to revise the practice guideline published by the American Academy of Pediatrics (AAP) in 1996.

METHODS: This review included search and analysis of the medical literature published since the last version of the guideline. Physicians with expertise and experience in the fields of neurology and epilepsy, pediatrics, epidemiology, and research methodologies constituted a subcommittee of the AAP Steering Committee on Quality Improvement and Management. The steering committee and other groups within the AAP and organizations outside the AAP reviewed the guideline. The subcommittee member who reviewed the literature for the 1996 AAP practice guidelines searched for articles published since the last guideline through 2009, supplemented by articles submitted by other committee members. Results from the literature search were provided to the subcommittee members for review. Interventions of direct interest included lumbar puncture, electroencephalography, blood studies, and neuroimaging. Multiple issues were raised and discussed iteratively until consensus was reached about recommendations. The strength of evidence supporting each recommendation and the strength of the recommendation were assessed by the committee member most experienced in informatics and epidemiology and graded according to AAP policy.

CONCLUSIONS: Clinicians evaluating infants or young children after a simple febrile seizure should direct their attention toward identifying the cause of the child’s fever. Meningitis should be considered in the differential diagnosis for any febrile child, and lumbar puncture should be performed if there are clinical signs or symptoms of concern. For any infant between 6 and 12 months of age who presents with a seizure and fever, a lumbar puncture is an option when the child is considered deficient in Haemophilus influenzae type b (Hib) or Streptococcus pneumoniae immunizations (ie, has not received scheduled immunizations as recommended), or when immunization status cannot be determined, because of an increased risk of bacterial meningitis. A lumbar puncture is an option for children who are pretreated with antibiotics. In general, a simple febrile seizure does not usually require further evaluation, specifically electroencephalography, blood studies, or neuroimaging. Pediatrics 2011;127:389–394
DEFINITION OF THE PROBLEM
This practice guideline provides recommendations for the neurodiagnostic evaluation of neurologically healthy infants and children 6 through 60 months of age who have had a simple febrile seizure and present for evaluation within 12 hours of the event. It replaces the 1996 practice parameter.1 This practice guideline is not intended for patients who have had complex febrile seizures (prolonged, focal, and/or recurrent), and it does not pertain to children with previous neurologic insults, known central nervous system abnormalities, or history of afebrile seizures.

TARGET AUDIENCE AND PRACTICE SETTING
This practice guideline is intended for use by pediatricians, family physicians, child neurologists, neurologists, emergency physicians, nurse practitioners, and other health care providers who evaluate children for febrile seizures.

BACKGROUND
A febrile seizure is a seizure accompanied by fever (temperature ≥ 100.4°F or 38°C2 by any method), without central nervous system infection, that occurs in infants and children 6 through 60 months of age. Febrile seizures occur in 2% to 5% of all children and, as such, make up the most common convulsive event in children younger than 60 months. In 1976, Nelson and Ellenberg,3 using data from the National Collaborative Perinatal Project, further defined febrile seizures as being either simple or complex. Simple febrile seizures were defined as primary generalized seizures that lasted for less than 15 minutes and did not recur within 24 hours. Complex febrile seizures were defined as focal, prolonged (≥15 minutes), and/or recurrent within 24 hours. Children who had simple febrile seizures had no evidence of increased mortality, hemiplegia, or mental retardation. During follow-up evaluation, the risk of epilepsy after a simple febrile seizure was shown to be only slightly higher than that of the general population, whereas the chief risk associated with simple febrile seizures was recurrence in one-third of the children. The authors concluded that simple febrile seizures are benign events with excellent prognoses, a conclusion reaffirmed in the 1980 consensus statement from the National Institutes of Health.3,4

The expected outcomes of this practice guideline include the following:
1. Optimize clinician understanding of the scientific basis for the neurodiagnostic evaluation of children with simple febrile seizures.
2. Aid the clinician in decision-making by using a structured framework.
3. Optimize evaluation of the child who has had a simple febrile seizure by detecting underlying diseases, minimizing morbidity, and reassuring anxious parents and children.
4. Reduce the costs of physician and emergency department visits, hospitalizations, and unnecessary testing.
5. Educate the clinician to understand that a simple febrile seizure usually does not require further evaluation, specifically electroencephalography, blood studies, or neuroimaging.

METHODOLOGY
To update the clinical practice guideline on the neurodiagnostic evaluation of children with simple febrile seizures,1 the American Academy of Pediatrics (AAP) reconvened the Subcommittee on Febrile Seizures. The committee was chaired by a child neurologist and consisted of a neuroepidemiologist, 3 additional child neurologists, and a practicing pediatrician. All panel members reviewed and signed the AAP voluntary disclosure and conflict-of-interest form. No conflicts were reported. Participation in the guideline process was voluntary and not paid. The guideline was reviewed by members of the AAP Steering Committee on Quality Improvement and Management; members of the AAP Section on Administration and Practice Management, Section on Developmental and Behavioral Pediatrics, Section on Epidemiology, Section on Infectious Diseases, Section on Neurology, Section on Neurologic Surgery, Section on Pediatric Emergency Medicine, Committee on Pediatric Emergency Medicine, Committee on Practice and Ambulatory Medicine, Committee on Child Health Financing, Committee on Infectious Diseases, Committee on Medical Liability and Risk Management, Council on Children With Disabilities, and Council on Community Pediatrics; and members of the Pediatric Committee of the Emergency Nurses Association.

A comprehensive review of the evidence-based literature published from 1996 to February 2009 was conducted to discover articles that addressed the diagnosis and evaluation of children with simple febrile seizures. Preference was given to population-based studies, but given the scarcity of such studies, data from hospital-based studies, groups of young children with febrile illness, and comparable groups were reviewed. Decisions were made on the basis of a systematic grading of the quality of evidence and strength of recommendations.

In the original practice parameter,1 203 medical journal articles were reviewed and abstracted. An additional 372 articles were reviewed and abstracted for this update. Emphasis was placed on articles that differentiated simple febrile seizures from other types of seizures. Tables were constructed from the 70 articles that best fit these criteria. The evidence-based approach to guideline development requires that the evidence in support of a recommendation be identified, appraised, and summarized and that an explicit link between
Evidence and recommendations be defined. Evidence-based recommendations reflect the quality of evidence and the balance of benefit and harm that is anticipated when the recommendation is followed. The AAP policy statement “Classifying Recommendations for Clinical Practice Guidelines” was followed in designating levels of recommendations (see Fig 1).

KEY ACTION STATEMENTS

Action Statement 1

Action Statement 1a

A lumbar puncture should be performed in any child who presents with a seizure and a fever and has meningeal signs and symptoms (eg, neck stiffness, Kernig and/or Brudzinski signs) or in any child whose history or examination suggests the presence of meningitis or intracranial infection.

- Aggregate evidence level: B (overwhelming evidence from observational studies).
- Benefits: Meningeal signs and symptoms strongly suggest meningitis, which, if bacterial in etiology, will likely be fatal if left untreated.
- Harms/risks/costs: Lumbar puncture is an invasive and often painful procedure and can be costly.

Action Statement 1b

In any infant between 6 and 12 months of age who presents with a seizure and fever, a lumbar puncture is an option when the child is deficient in Haemophilus influenzae type b (Hib) or Streptococcus pneumoniae immunizations (ie, has not received scheduled immunizations as recommended) or when immunization status cannot be determined because of an increased risk of bacterial meningitis.

- Aggregate evidence level: D (reasoning from clinical experience, case series).
- Benefits: Antibiotics may mask meningeal signs and symptoms but may be insufficient to eradicate meningitis; a diagnosis of meningitis, if bacterial in etiology, will likely be fatal if left untreated.
- Harms/risks/costs: Lumbar puncture is an invasive and often painful procedure and can be costly.

Action Statement 1c

A lumbar puncture is an option in the child who presents with a seizure and fever and is pretreated with antibiotics, because antibiotic treatment can mask the signs and symptoms of meningitis.

- Aggregate evidence level: D (reasoning from clinical experience, case series).
- Benefits: Antibiotics may mask meningeal signs and symptoms but may be insufficient to eradicate meningitis; a diagnosis of meningitis, if bacterial in etiology, will likely be fatal if left untreated.
- Harms/risks/costs: Lumbar puncture is an invasive and often painful procedure and can be costly.
Role of patient preferences: Although parents may not wish to have their child undergo a lumbar puncture, medical providers should explain that in the presence of pretreatment with antibiotics, the signs and symptoms of meningitis may be masked. Meningitis, if untreated, can be fatal.

Exclusions: None.

Intentional vagueness: Data are insufficient to define the specific treatment duration necessary to mask signs and symptoms. The committee determined that the decision to perform a lumbar puncture will depend on the type and duration of antibiotics administered before the seizure and should be left to the individual clinician.

Policy level: Option.

The committee recognizes the diversity of past and present opinions regarding the need for lumbar punctures in children younger than 12 months with a simple febrile seizure. Since the publication of the previous practice parameter,1 the need for lumbar punctures in children younger than 12 months with a simple febrile seizure.6–8 Moreover, although approximately 25% of young children with meningitis have seizures as the presenting sign of the disease, some are either obtunded or comatose when evaluated by a physician for the seizure, and the remainder most often have obvious clinical signs of meningitis (focal seizures, recurrent seizures, petechial rash, or nuchal rigidity).9–11 Once a decision has been made to perform a lumbar puncture, then blood culture and serum glucose testing should be performed concurrently to increase the sensitivity for detecting bacteria and to determine if there is hypoglycemia characteristic of bacterial meningitis, respectively. Recent studies that evaluated the outcome of children with simple febrile seizures have included populations with a high prevalence of immunization.7,8 Data for unimmunized or partially immunized children are lacking. Therefore, lumbar puncture is an option for young children who are considered deficient in immunizations or those in whom immunization status cannot be determined. There are also no definitive data on the outcome of children who present with a simple febrile seizure while already on antibiotics. The authors were unable to find a definition of “pretreated” in the literature, so they consulted with the AAP Committee on Infectious Diseases. Although there is no formal definition, pretreatment can be considered to include systemic antibiotic therapy by any route given within the days before the seizure. Whether pretreatment will affect the presentation and course of bacterial meningitis cannot be predicted but will depend, in part, on the antibiotic administered, the dose, the route of administration, the drug’s cerebrospinal fluid penetration, and the organism causing the meningitis. Lumbar puncture is an option in any child pretreated with antibiotics before a simple febrile seizure.

Action Statement 2

An electroencephalogram (EEG) should not be performed in the evaluation of a neurologically healthy child with a simple febrile seizure.

Aggregation evidence level: B (overwhelming evidence from observational studies).

Benefits: One study showed a possible association with paroxysmal EEGs and a higher rate of afebrile seizures.12

Harms/risks/costs: EEGs are costly and may increase parental anxiety.

Benefits/harms assessment: Preponderance of harm over benefit.

Value judgments: Observational data were used for this judgment.

Role of patient preferences: Although an EEG might have limited prognostic utility in this situation, parents should be educated that the study will not alter outcome.

Exclusions: None.

Intentional vagueness: None.

Policy level: Strong recommendation.

There is no evidence that EEG readings performed either at the time of presentation after a simple febrile seizure or within the following month are predictive of either recurrence of febrile seizures or the development of afebrile seizures/epilepsy within the next 2 years.13,14 There is a single study that found that a paroxysmal EEG was associated with a higher rate of afebrile seizures.12 There is no evidence that interventions based on this test would alter outcome.

Action Statement 3

The following tests should not be performed routinely for the sole purpose of identifying the cause of a simple febrile seizure: measurement of serum electrolytes, calcium, phosphorus, magnesium, or blood glucose or complete blood cell count.

Aggregation evidence level: B (overwhelming evidence from observational studies).

Benefits: A complete blood cell count may identify children at risk for bacte-
remia; however, the incidence of bacteremia in febrile children younger than 24 months is the same with or without febrile seizures.

- Harms/risks/costs: Laboratory tests may be invasive and costly and provide no real benefit.
- Benefits/harms assessment: Preponderance of harm over benefit.
- Value judgments: Observational data were used for this judgment.
- Role of patient preferences: Although parents may want blood tests performed to explain the seizure, they should be reassured that blood tests should be directed toward identifying the source of their child’s fever.
- Exclusions: None.
- Intentional vagueness: None.
- Policy level: Strong recommendation.

There is no evidence to suggest that routine blood studies are of benefit in the evaluation of the child with a simple febrile seizure.15–18 Although some children with febrile seizures have abnormal serum electrolyte values, their condition should be identifiable by obtaining appropriate histories and performing careful physical examinations. It should be noted that as a group, children with febrile seizures have relatively low serum sodium concentrations. As such, physicians and caregivers should avoid overhydration with hypotonic fluids.18 Complete blood cell counts may be useful as a means of identifying young children at risk of bacteremia. It should be noted, however, that the incidence of bacteremia in children younger than 24 months with or without febrile seizures is the same. When fever is present, the decision regarding the need for laboratory testing should be directed toward identifying the source of the fever rather than as part of the routine evaluation of the seizure itself.

Action Statement 4

Neuroimaging should not be performed in the routine evaluation of the child with a simple febrile seizure.

- Aggregate evidence level: B (overwhelming evidence from observational studies).
- Benefits: Neuroimaging might provide earlier detection of fixed structural lesions, such as dysplasia, or very rarely, abscess or tumor.
- Harms/risks/costs: Neuroimaging tests are costly, computed tomography (CT) exposes children to radiation, and MRI may require sedation.
- Benefits/harms assessment: Preponderance of harm over benefit.
- Value judgments: Observational data were used for this judgment.
- Role of patient preferences: Although parents may want neuroimaging performed to explain the seizure, they should be reassured that the tests carry risks and will not alter outcome for their child.
- Exclusions: None.
- Intentional vagueness: None.
- Policy level: Strong recommendation.

The literature does not support the use of skull films in evaluation of the child with a febrile seizure.15,19 No data have been published that either support or negate the need for CT or MRI in the evaluation of children with simple febrile seizures. Data, however, show that CT scanning is associated with radiation exposure that may escalate future cancer risk. MRI is associated with risks from required sedation and high cost.20,21 Extrapolation of data from the literature on the use of CT in neurologically healthy children who have generalized epilepsy has shown that clinically important intracranial structural abnormalities in this patient population are uncommon.22,23

CONCLUSIONS

Clinicians evaluating infants or young children after a simple febrile seizure should direct their attention toward identifying the cause of the child’s fever. Meningitis should be considered in the differential diagnosis for any febrile child, and lumbar puncture should be performed if the child is ill-appearing or if there are clinical signs or symptoms of concern. A lumbar puncture is an option in a child 6 to 12 months of age who is deficient in Hib and *S pneumoniae* immunizations or for whom immunization status is unknown. A lumbar puncture is an option in children who have been pretreated with antibiotics. In general, a simple febrile seizure does not usually require further evaluation, specifically EEGs, blood studies, or neuroimaging.

SUBCOMMITTEE ON FEBRILE SEIZURES, 2002–2010

Patricia K. Duffner, MD (neurology, no conflicts)
Peter H. Berman, MD (neurology, no conflicts)
Robert J. Baumann, MD (neuroepidemiology, no conflicts)
Paul Graham Fisher, MD (neurology, no conflicts)
John L. Green, MD (general pediatrics, no conflicts)
Sanford Schneider, MD (neurology, no conflicts)

STAFF
Caryn Davidson, MA

OVERSIGHT BY THE STEERING COMMITTEE ON QUALITY IMPROVEMENT AND MANAGEMENT, 2009–2011
REFERENCES

1. American Academy of Pediatrics, Provi-
sional Committee on Quality Improvement
and Subcommittee on Febrile Seizures.
Practice parameter: the neurodiagnostic
evaluation of a child with a first simple fe-
769–772; discussion 773–775
Brighton Collaboration Fever Working
Group. Fever as an adverse event following
immunization: case definition and guide-
lines of data collection, analysis, and, pre-
3. Nelson KB, Ellenberg JH. Predictors of epi-
lepsy in children who have experienced fe-
1029–1033
4. Consensus statement: febrile seizures—
long-term management of children with
66(6):1009–1012
5. American Academy of Pediatrics, Steering
Committee on Quality Improvement and
Management. Classifying recommenda-
tions for clinical practice guidelines. Pedi-
atrics. 2004;114(3):874–877
6. Trainor JL, Hampers LC, Listernick R.
Children with first-time simple febrile
seizures are at low risk of serious bacterial
7. Shaked O, Peña BM, Linares MY, Baker RL.
Simple febrile seizures: are the AAP guide-
lines regarding lumbar puncture being fol-
8–11
8. Kimia AA, Capraro AJ, Hummel D, Johnston
P, Harper MB. Utility of lumbar puncture for
first simple febrile seizure among children 6
to 18 months of age. Pediatrics. 2009;
123(1):6–12
9. Warden CR, Zibulewsky J, Mace S, Gold C,
Gausche-Hill M. Evaluation and manage-
ment of febrile seizures in the out-of-
hospital and emergency department set-
10. Rutter N, Smales OR. Role of routine investi-
gations in children presenting with their
first febrile convulsion. Arch Dis Child. 1977;
52(3):188–191
RF, Mellick L. Can seizures be the sole man-
ifestation of meningitis in febrile children?
brile seizures: is the EEG a useful predictor
36(1):31–36
13. Frantzen E, Lennox-Buchthal M, Nygaard A.
Longitudinal EEG and clinical study of chil-
dren with febrile convulsions. Electroen-
cephalogr Clin Neurophysiol. 1968;24(3):
197–212
14. Thor I. The significance of electroencepha-
lography in febrile convulsions. In: Akimoto
H, Kazamatsuri H, Seino M, Ward A, eds. Ad-
vances in Epileptology: XIIIth International
Epilepsy Symposium. New York, NY: Raven
Press, 1982:93–95
15. Jaffe M, Bar-Joseph G, Tirosh E. Fever and
convulsions: indications for laboratory in-
729–731
16. Gerber MA, Berliner BC. The child with a
“simple” febrile seizure: appropriate diag-
135(5):431–443
17. Heijbel J, Blom S, Bergfors PG. Simple fe-
brile convulsions: a prospective incidence
study and an evaluation of investigations
initially needed. Neuropediatrics. 1980;11(1):
45–56
18. Thoman JE, Duffner PK, Shucard JL. Do se-
erum sodium levels predict febrile seizure
recurrence within 24 hours? Pediatr Neu-
oral. 2004;31(5):342–344
EM. Routine skull roentgenograms in the
management of simple febrile seizures. J
Pediatr. 1979;90(4):595–596
20. Stein SC, Hurst RW, Sonnad SS. Meta-
analysis of cranial CT scans in children: a
mathematical model to predict radiation-
induced tumors associated with radiation
exposure that may escalate future cancer
448–457
21. Brenner DJ, Hall EJ. Computed tomography:
an increasing source of radiation exposure.
22. Yang PJ, Bergé PE, Cohen ME, Duffner PK.
Computed tomography and childhood sei-
zure disorders. Neurology. 1979;29(8):
1084–1088
23. Bachman DS, Hodges FJ, Freeman JM. Com-
puterized axial tomography in chronic sei-
1976;58(6):828–832